[Reading] CNN Architectures in Medical Imaging Analysis
Published:
This is a blog post review on publications about Convolutional Neural Networks in healthcare and medical imaging.
Credits to Weina Jin
U-Net - Segmentation
- Ronneberger, O., Fischer, P., & Brox, T. (2015). “U-Net: Convolutional Networks for Biomedical Image Segmentation”. ArXiv:1505.04597 [Cs]. Retrieved from http://arxiv.org/abs/1505.04597
V-Net - 3D volumetric segmentation
- F. Milletari, N. Navab, and S.-A. Ahmadi, “V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation”, arXiv:1606.04797 [cs], Jun. 2016.
3D U-Net
- Ö. Çiçek, A. Abdulkadir, S. S. Lienkamp, T. Brox, and O. Ronneberger, “3D U-Net: Learning Dense Volumetric Segmentation from Sparse Annotation”, arXiv:1606.06650 [cs], Jun. 2016.
Dermatology - Transfer learning
- A. Esteva et al., “Dermatologist-level classification of skin cancer with deep neural networks”, Nature, vol. 542, no. 7639, pp. 115–118, 02 2017.
Histopathology - Color normalization - GAN
- A. Bentaieb and G. Hamarneh, “Adversarial Stain Transfer for Histopathology Image Analysis”, IEEE Transactions on Medical Imaging, vol. 37, no. 3, pp. 792–802, Mar. 2018.
AlexNet
- A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification with deep convolutional neural networks”, Communications of the ACM, vol. 60, no. 6, pp. 84–90, May 2017.
YOLO - Object detection
- Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You Only Look Once: Unified, Real-Time Object Detection”, arXiv:1506.02640 [cs], Jun. 2015.
Super resolution
M. Haris, G. Shakhnarovich, and N. Ukita, “Deep Back-Projection Networks For Super-Resolution”, arXiv:1803.02735 [cs], Mar. 2018.
X. Wang, K. Yu, C. Dong, and C. C. Loy, “Recovering Realistic Texture in Image Super-resolution by Deep Spatial Feature Transform”, arXiv:1804.02815 [cs], Apr. 2018.